

DESICCANT COMPRESSED AIR DRYERS

Heated Blower Purge; Heated; Heatless

3 - 10,000+ scfm

AUTHORIZED DISTRIBUTOR

CLEAN, DRY COMPRESSED AIR IS ESSENTIAL

Sullair Desiccant Compressed Air Dryers are engineered for the most critical applications — providing dry compressed air where you need it most.

Compressed air contamination such as water, dust, bacteria, microorganisms and industrial acids can ruin product and foul processes. Removing it is essential to help protect your downstream equipment and reduce maintenance cost and downtime.

 Ideal for applications requiring extremely low dew point -40°F/-40°C (-100°F/-73°C optional)

REGENERATION METHODS

Heatless

Uses roughly 15% of process air during the regeneration process

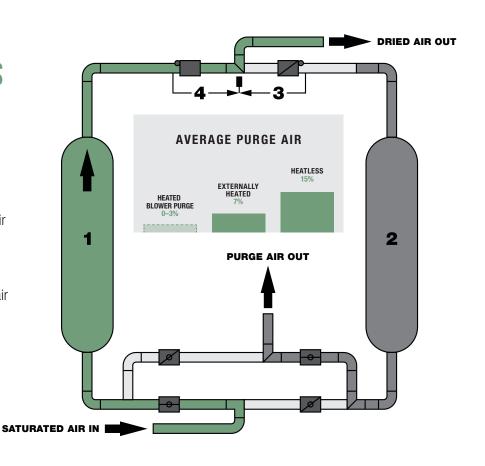
Heatless dryers divert a small amount of dried process air from the drying vessel to regenerate the opposite vessel.

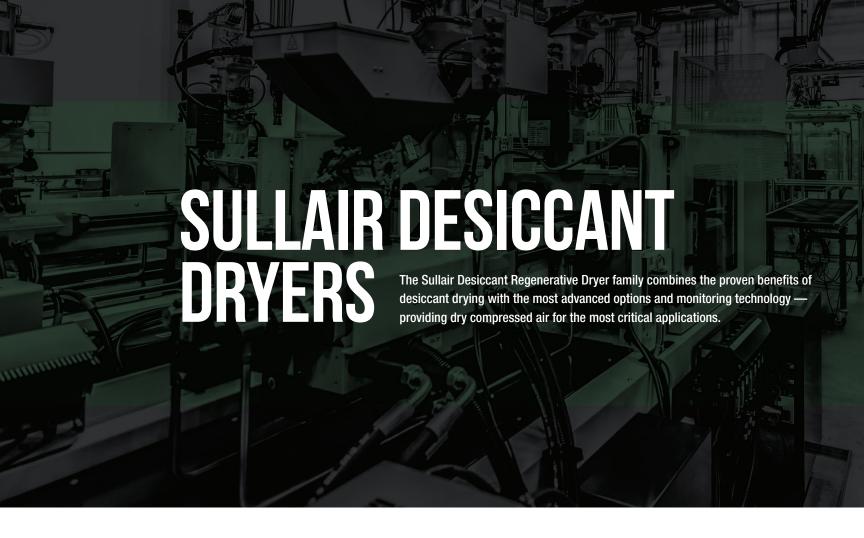
Heated

Uses roughly 7% of process air during the regeneration process

Heated dryers use an additional heat source—reducing process air loss during the regeneration process. The additional heat source helps enhance the drying and regeneration process while saving energy.

Heated Blower Purge


Uses roughly 0–3 % of process air during the regeneration process


Heated Blower Purge Dryers use a combination of an additional heat source, air from a blower and little to no process air. The three-tiered method helps optimize drying and regeneration processes while reducing energy consumption — maximizing energy cost savings over the lifecycle.

HOW DESICCANT DRYING WORKS

Sullair Desiccant Dryers have a dual tower design in which both vessels are filled with desiccant material.

- Saturated, compressed air passes through vessel one where the desiccant adsorbs moisture lowering the dewpoint to expel dry compressed air*
- Once vessel one reaches a set level of saturation, the air switches to pass through vessel two
- **3.** While the air is passing through vessel two, vessel one dries and regenerates the desiccant material
- **4.** When vessel two reaches a set level of saturation, the air switches to pass through vessel one

SULLAIR DESICCANT COMPRESSED AIR DRYERS ARE AVAILABLE IN THE FOLLOWING CONFIGURATIONS:

- **DBP Series Heated Blower Purge** 500 to 10,000+ scfm
- DEX Series Externally Heated 200 to 3500 scfm
- DHL Series Heatless 80 to 5000 scfm
- DP Series Heatless Premium 80 to 2800 scfm
- D Series Heatless 80 to 800 scfm
- DMD Series Modular 3 to 240 scfm

DBP SERIES

DESICCANT HEATED BLOWER PURGE REGENERATIVE DRYERS 500 – 10,000 scfm

- Direct drive blower and in-line heater
 - Helps optimize drying and regeneration process
 - Helps save energy costs
- 7" Color Desiccant Touch Screen (DTS) Controller for reliable control wherever you are
 - Remote connectivity via PROFINET
- -40°F/-40°C dew point performance
 - -4°F/-20°C can be user selected from controller
- NEMA 12
- High-quality valves, actuators and air distribution schemes help provide worry-free performance tailored to your application
- Engineered to stand up to harsh environments
 - Rugged frame with forklift pockets for easy transit and installation
- Alarm systems designed to help reduce downtime with easy detection and diagnostics

- Demand cycle control with digital dew point monitor
- Remote communication enhancements
 - PROFIBUS
 - Tank-mounted temperature gauge
 - Inlet/outlet pressure gauge
- Failure to switch pressure alarm
- Pre-mounted filters
- 3-valve and 9-valve duplex filter bypass options
- Robust enclosure options:
 - NEMA 4
 - NEMA 4 stainless steel
 - NEMA 7 Class1, Div II Group C & D electrical enclosure
- Subzero & low ambient package options
- Tank insulation with safety jacket
- Optional voltages
 - **575/3/60**
 - **380-400/3/50**
- Stainless steel control air tubing
- High-pressure design 200, 250 and 300 psi
- Fusible disconnect for NEMA 1 (indoor) and NEMA 4X (outdoor)
- Visual moisture indicator


DEX SERIES

DESICCANT EXTERNALLY HEATED REGENERATIVE DRYERS 200 – 3500 scfm

- In-line heater
 - Helps save energy costs
- 7" Color DTS Controller for reliable control wherever you are
 - Remote connectivity via PROFINET
- -40°F/-40°C dew point performance
 - -4°F/-20°C can be user selected from controller
- NEMA 12
- High-quality valves, actuators and air distribution schemes help provide worry-free performance tailored to your application
- Engineered to stand up to harsh environments
 - Rugged frame with forklift pockets for easy transit and installation
- Alarm systems designed to help reduce downtime with easy detection and diagnostics

- Demand cycle control with digital dew point monitor
- Remote communication enhancements
 - PROFIBUS
 - Tank-mounted temperature gauge
 - Inlet/outlet pressure gauge
- Failure to switch pressure alarm
- Pre-mounted filters
- 3-valve and 9-valve duplex filter bypass options
- Robust enclosure options:
 - NEMA 4
 - NEMA 4 stainless steel
 - NEMA 7
- Subzero & low ambient package options
- Tank insulation with safety jacket
- Optional voltages
 - **575/3/60**
 - **380-400/3/50**
- Stainless steel control air tubing
- High-pressure design 200, 250 and 300 psi
- Fusible disconnect for NEMA 1 (indoor) and NEMA 4X (outdoor)
- Visual moisture indicator

- Advanced operating interface for ease of use and simple plant system integration
 - WindEDIT App
 - Embedded Ethernet port
 - Embedded SD memory port
 - Modbus TCP and RTU
 - Embedded RS232C/RS485 user selectable
 - Data logging
 - Web Server Functions

DHL SERIES

DESICCANT HEATLESS REGENERATIVE DRYER 80 – 5000 scfm

- Easy-access 4.3" PLC color touch screen controller
- Completely automatic operation
- NEMA 4
- High-performance, stainless steel angle body valves with PTFE seals help reduce air leakage (80–600 scfm)
- Field adjustable timer cycle, 6, 10, or 15 minutes
- Pre-piped and mounted pre-filter and after filter
- Fail-safe design in case of power failure
- Safety alarms

- Pneumatic control timer eliminates need for electric power
- NEMA 4x and NEMA 7
- High pressure design up to 10,000 psig
- Demand cycle control
- Optional voltage
 - **208**, 220, 230/1/60
 - **208**, 220, 230/1/50
- High dewpoint alarm
- Failure to switch pressure alarm
- -100° F pressure dew point
- Special finishes for harsh environments

DP SERIES

PREMIUM DESICCANT HEATLESS REGENERATIVE DRYERS 80 – 2800 scfm

- 3.8" DTS Controller for maximum efficiency
 - Condition monitoring for ease of operation
 - Energy Management System
 - Humidity sensor helps reduce purge air and energy consumption
 - Optional dew point sensor
- -40°F/-40°C dew point performance
 - Optional -100°F/-73°C
- Built for simplified maintenance and service with open frame design and histogram
- Engineered to stand up to harsh environments
- High performance angle body valves with PTFE seals help reduce air leakage
 - Reduced maintenance costs with service kits
- Minimized noise via exhaust valve speed control

- Smart condition-based switching for ease of operation
- Easy touch screen access to maintenance & operational data including histogram

- Dew point monitor display
- Failure to switch pressure alarm
- Delta pressure filter alarm with gauge
- Webpage with data log
- Pneumatic controls
- Pre-piped filters with 3-valve bypass

D SERIES

DESICCANT HEATLESS REGENERATIVE DRYERS 80 – 800 scfm

- LED Desiccant Controller (DC) with dryer schematic
- -40°F/-40°C dew point performance
- Built for simplified maintenance and service
- High performance angle body valves with PTFE seals help reduce air leakage
 - Reduced maintenance costs with service kits
- Minimized noise via exhaust valve speed control

Options

Pre-piped filters with 3-valve bypass

DMD SERIES

DESICCANT MODULAR REGENERATIVE DRYERS 3 - 240 scfm

- Compact design
- Inlet and purge manifold design for low pressure drop
- Mini PLC monitor
- Completely automatic
- Point-of-use placement

- Pre- and after-filter (shipped loose)
- Mounted filters with 3-valve bypass
- Visual moisture indicator
- Energy efficient demand cycle control with dew point monitor
- Dew point monitor
- -4°F (-20°C) or -100°F (-73°C) pressure dew point

For more than 50 years, Sullair has been on the leading edge of compressed air solutions. We were one of the first to execute rotary screw technology in our air compressors, and our machines are famous all over the world for their legendary durability. As the industry moves forward, Sullair will always be at the forefront with quality people, innovative solutions, and air compressors that are built to last.

Sullair was founded in Michigan City, Indiana in 1965, and has since expanded with a broad international network to serve customers in every corner of the globe. Sullair has offices in Chicago and manufacturing facilities in the United States and China — all ISO 9001 certified to ensure the highest quality standards in manufacturing. In addition, the Sullair Suzhou facility is ISO 14001 and OHSAS 18001 certified.

Sullair is A Hitachi Group Company

These are the pillars that drive the quality of Sullair compressed air solutions. It's a promise we keep with every machine we make.

RELIABILITY

Customers who work with Sullair have found that the intangibles make all the difference—things like trust, confidence, and peace of mind. They go to work every day having full faith in their equipment, as well as the knowledge that dedicated distributors and Sullair personnel have their back every step of the way.

DURABILITY

Bulletproof. Built to last. However you spin it, Sullair compressed air solutions are in it for the long haul, driven by innovative designs pioneering the air treatment industry. And ready to stand the test of time.

PERFORMANCE

Sullair is constantly innovating to improve our compressed air solutions. For our compressed air treatment line, this means more energy efficiency. With air treatment being a vital part of your entire compressed air system, Sullair is committed to helping you protect your equipment and manage your operating expenses.

D SERIES DESICCANT HEATLESS REGENERATIVE DRYERS

FREQUENCY: 60 Hz & 50 Hz

Model #	Flow Rate (scfm)	Connection Size (NPT)	Height (in)	Width (in)	Depth (in)	Empty Weight (lbs)	Total Fill Weight (lbs)
D80	80	3⁄4″	54	37	21	232	364
D100	100	1″	68	38	23	295	462
D120	120	1″	64	38	23	296	463
D160	160	1¼″	68	40	26	320	582
D200	200	1¼″	68	40	26	320	582
D250	250	1½″	69	44	30	413	797
D300	300	1½″	69	44	30	412	796
D400	400	2″	71	48	34	594	1133
D500	500	2″	73	53	36	717	1432
D650	650	2½″	73	56	40	871	1788
D800	800	2½″	71	61	43	925	2039

		CAPA	ACITY CORRECT	ION FACTORS FO	OR DIFFERING OF	PERATING PRESS	SURE							
Operating Pressure psig	Operating Pressure psig 60 70 80 90 100 110 120 130 140 150													
Correction Factor	0.65	0.74	0.82	0.91	1	1.09	1.17	1.22	1.25	1.3				

	CAPACITY CORRECTION FACTORS FOR DIFFERING INLET AIR TEMPERATURES													
Inlet Air Temperature ${}^\circ\! F$	90	95	100	105	110	115	120							
Correction Factor	1.07	1.04	1	0.92	0.84	0.77	0.70							

Air flow capacity = Operating pressure x Inlet air temperature

Standard outlet pressure dew point $^{\circ}\!F$ -40 Standard operating voltage 115V/1PH

Pre- and post-filtration recommended

Pre-filtration grade μm.01Post-filtration grade μm1

cULus control panel

IP-55

ASME approved vessels

CRN approved vessels available. For more details, contact your Sullair Sales Representative.

Min/max inlet air temperature $^{\circ}F$ 40/120Min/max operating pressure psig60/150Average purge air*15%

^{*} Purge air percentage is the amount of dried compressed air diverted from the active drying vessel to the other vessel during the regeneration process. The diverted air does not return to the system. Meaning the lower the average purge percentage, the higher system efficiency is.

^{**} Base model weight and dimensions reflected--does NOT include filter and bypass

DP SERIES PREMIUM DESICCANT HEATLESS REGENERATIVE DRYERS

FREQUENCY: 60 Hz & 50 Hz

Model #	Flow Rate (scfm)	Connection Size	Height (in)	Width (in)	Depth (in)	Empty Weight (lbs)	Total Fill Weight (lbs)
DP80	80	3/4" NPT	54	37	21	251	383
DP100	100	1″ NPT	68	38	23	314	481
DP120	120	1″ NPT	64	38	23	315	482
DP160	160	1¼″ NPT	68	40	26	339	601
DP200	200	1¼″ NPT	68	40	26	339	601
DP250	250	1½″ NPT	69	44	30	433	817
DP300	300	1½″ NPT	69	44	30	432	816
DP400	400	2" NPT	71	48	34	613	1152
DP500	500	2" NPT	73	53	36	736	1451
DP650	650	2½" NPT	73	56	40	892	1809
DP800	800	2½" NPT	71	61	43	944	2058
DP1000	1000	2½" Flange ANSI	90	66	30	1490	2650
DP1200	1200	2½" Flange ANSI	91	66	32	1792	3192
DP1500	1500	3" Flange ANSI	90	72	39	2814	4654
DP1900	1900	3" Flange ANSI	96	72	39	2814	5054
DP2300	2300	4" Flange ANSI	103	78	45	4168	7428
DP2800	2800	4" Flange ANSI	103	78	45	4168	7428

		CAPA	ACITY CORRECT	ION FACTORS FO	R DIFFERING OF	PERATING PRES	SURE			
Operating Pressure psig	60	70	80	90	100	110	120	130	140	150
Correction Factor	0.65	0.74	0.82	0.91	1	1.09	1.17	1.22	1.25	1.3

	CAPACITY CORRECTION FACTORS FOR DIFFERING INLET AIR TEMPERATURES													
Inlet Air Temperature ${}^\circ\! F$	90	95	100	105	110	115	120							
Correction Factor	Correction Factor 1.07 1.04 1 0.92 0.84 0.77 0.70													

Air flow capacity = Operating pressure x Inlet air temperature

Standard outlet pressure dew point $^{\circ}\!F$ -40 Optional outlet pressure dew point $^{\circ}\!F$ -100 Standard operating voltage 115V/1PH

Pre- and post-filtration recommended

Pre-filtration grade μm.01Post-filtration grade μm1

cULus control panel

NEMA 4

ASME approved vessels

CRN approved vessels available. For more details, contact your Sullair Sales Representative.

Min/max inlet air temperature $^{\circ}F$ 40/120Min/max operating pressure psig60/150Average purge air*15%

^{**} Base model weight and dimensions reflected--does NOT include filter and bypass

^{*} Purge air percentage is the amount of dried compressed air diverted from the active drying vessel to the other vessel during the regeneration process. The diverted air does not return to the system. Meaning the lower the average purge percentage, the higher system efficiency is.

DHL SERIES DESICCANT HEATI ESS REGENERATIVE DRYERS

FREQUENCY: 60 Hz & 50 Hz

Model #	Flow Rate (scfm)	Connection Size	Height (in)	Width (in)	Depth (in)	Weight (lbs)
DHL-80	80	34" NPT	84	24	31	450
DHL-100	100	1″NPT	84	24	31	550
DHL-125	125	1″NPT	84	24	31	600
DHL-150	150	1"NPT	85	24	34	650
DHL-200	200	1"NPT	85	24	34	880
DHL-250	250	1½″ NPT	87	24	39	1250
DHL-300	300	1½" NPT	87	24	39	1350
DHL-400	400	2″ NPT	89	26	45	1900
DHL-500	500	2″ NPT	89	26	47	2200
DHL-600	600	2″ NPT	89	26	47	2500
DHL-800	800	3″ FLG	95	40	66	2800
DHL-1000	1000	3″ FLG	95	40	66	4150
DHL-1250	1250	3″ FLG	95	40	70	4400
DHL-1500	1500	3″ FLG	95	40	70	4700
DHL-2000	2000	4" FLG	114	59	84	4900
DHL-2500	2500	4" FLG	114	59	84	5600
DHL-3000	3000	6" FLG	118	70	103	8100
DHL-3500	3500	6″ FLG	137	70	103	8300
DHL-4000	4000	6" FLG	137	70	103	10500
DHL-4500	4500	6" FLG	137	75	110	11800
DHL-5000	5000	6″ FLG	137	75	110	14500

	CAPACITY CORRECTION FACTORS FOR DIFFERING OPERATING PRESSURE														
Operating Pressure psig	50	60	70	80	90	100	110	120	130	140	150	175	200	225	250
Correction Factor	0.56	0.65	0.74	0.83	0.91	1.00	1.04	1.08	1.12	1.16	1.2	1.29	1.37	1.45	1.52

	CAPACITY CORRECTION FACTORS FOR DIFFERING INLET AIR TEMPERATURES													
Inlet Air Temperature $^{\circ}\!\mathcal{F}$	70	80	90	100	105	110	115	120						
Correction Factor	1.12	1.1	1.06	1	0.93	0.86	0.8	0.75						

Air flow capacity = Operating pressure x Inlet air temperature

Standard outlet pressure dew point $^{\circ}\mathcal{F}$ -40 (Customer selectable -4)

Optional outlet pressure dew point $^{\circ}F$ -100

Standard operating voltage 110,115V/1PH

Pre- and post-filtration recommended

Pre-filtration grade μm.01Post-filtration grade μm1

ASME certified vessels

CRN approved vessels available

DHL-80 to DHL-2500 units CRN for all provinces.

For more details on units larger than the DHL-2500, contact your Sullair Sales Representative.

cULus control panel

Min/max inlet air temperature $^{\circ}F$ 40/120Min/max operating pressure psig60/150Average purge air*15%

^{**} Desiccant ships separate for dryers rated 2000 scfm and above

^{*} Purge air percentage is the amount of dried compressed air diverted from the active drying vessel to the other vessel during the regeneration process. The diverted air does not return to the system. Meaning the lower the average purge percentage, the higher system efficiency is.

DBP SERIES

DESICCANT HEATED BLOWER PURGE REGENERATIVE DRYERS

FREQUENCY: 60 Hz

Model #	Flow Rate (scfm)	Connection Size	Height (in)	Width (in)	Depth (in)	Weight (lbs)
DBP-500	500	2" NPT	92	45	71	2500
DBP-650	650	2" NPT	92	45	71	2750
DBP-800	800	3" Flange ANSI	95	60	93	4100
DBP-1000	1000	3" Flange ANSI	95	60	93	4500
DBP-1250	1250	3" Flange ANSI	97	60	93	8200
DBP-1500	1500	3" Flange ANSI	97	60	93	8200
DBP-2000	2000	4" Flange ANSI	114	65	106	9800
DBP-2500	2500	4" Flange ANSI	114	65	106	15,000
DBP-3000	3000	6" Flange ANSI	134	82	130	15,000
DBP-3500	3500	6" Flange ANSI	134	82	130	19,000
DBP-4000	4000	6" Flange ANSI	134	82	131	19,000
DBP-5000	5000	6" Flange ANSI	134	82	130	28,000
DBP-6000	6000	6" Flange ANSI	134	83	132	CF
DBP-7000	7000	8" Flange ANSI	CF	CF	CF	CF
DBP-7500	7500	8" Flange ANSI	CF	CF	CF	CF
DBP-9000	9000	10" Flange ANSI	CF	CF	CF	CF
DBP-10,000	10,000	10" Flange ANSI	CF	CF	CF	CF

	CAPACITY CORRECTION FACTORS FOR DIFFERING OPERATING PRESSURE														
Operating Pressure psig	50	60	70	80	90	100	110	120	130	140	150	175	200	225	250
Correction Factor	0.56	0.65	0.74	0.83	0.91	1.00	1.04	1.08	1.12	1.16	1.2	1.29	1.37	1.45	1.52

	CAPACITY CORRECTION FACTORS FOR DIFFERING INLET AIR TEMPERATURES													
Inlet Air Temperature $^{\circ}\!\mathit{F}$	70	80	90	100	105	110	115	120						
Correction Factor	1.12	1.1	1.06	1	0.93	0.86	0.8	0.75						

Air flow capacity = Operating pressure x Inlet air temperature

Standard outlet pressure dew point °F -40 (Customer selectable -4)

Standard operating voltage 4

460V/3PH

Pre- and post-filtration recommended

Pre-filtration grade μm.01Post-filtration grade μm1

NEMA 12

ASME certified vessels

CRN approved vessels in select provinces

cULus control panel

 $\begin{array}{ll} \text{Max inlet air temperature } ^{\mathcal{F}} & 100 \\ \text{Min/max ambient air temperature } ^{\mathcal{F}} & -13/149 \\ \text{Min/max operating pressure } psig & 100/125 \\ \text{Average purge air*} & 3\% \\ \end{array}$

^{**} Desiccant ships separate for dryers rated 2000 scfm and above

^{*} Purge air percentage is the amount of dried compressed air diverted from the active drying vessel to the other vessel during the regeneration process. The diverted air does not return to the system. Meaning the lower the average purge percentage, the higher system efficiency is.

DEX SERIES DESICCANT EXTERNALLY HEATED REGENERATIVE DRYER

FREQUENCY: 60 Hz

Model #	Flow Rate (scfm)	Connection Size	Height (in)	Width (in)	Depth (in)	Weight (lbs)
DEX-200	200	1″NPT	89	38	42	950
DEX-250	250	1½″ NPT	90	43	43	1100
DEX-300	300	1½″ NPT	90	43	43	1250
DEX-400	400	2" NPT	92	45	47	1500
DEX-500	500	2" NPT	92	45	47	1600
DEX-600	600	2" NPT	92	45	47	2100
DEX-800	800	3" Flange ANSI	95	60	80	2500
DEX-900	900	3" Flange ANSI	95	60	80	2800
DEX-1000	1000	3" Flange ANSI	95	60	80	4100
DEX-1250	1250	3" Flange ANSI	95	60	80	4700
DEX-1500	1500	3" Flange ANSI	95	60	80	4900
DEX-2000	2000	4" Flange ANSI	113	68	85	5300
DEX-2500	2500	4" Flange ANSI	113	68	85	6200
DEX-3000	3000	6" Flange ANSI	134	82	125	7600
DEX-3500	3500	6" Flange ANSI	134	82	125	8300

CAPACITY CORRECTION FACTORS FOR DIFFERING OPERATING PRESSURE															
Operating Pressure psig	50	60	70	80	90	100	110	120	130	140	150	175	200	225	250
Correction Factor	0.56	0.65	0.74	0.83	0.91	1.00	1.04	1.08	1.12	1.16	1.2	1.29	1.37	1.45	1.52

CAPACITY CORRECTION FACTORS FOR DIFFERING INLET AIR TEMPERATURES											
Inlet Air Temperature ${}^\circ\!\mathcal{F}$	70	80	90	100	105	110	115	120			
Correction Factor	1.12	1.1	1.06	1	0.93	0.86	0.8	0.75			

Air flow capacity = Operating pressure x Inlet air temperature

Standard outlet pressure dew point $^{\circ}\mathcal{F}$ -40 (Customer selectable -4)

Standard operating voltage 460V/3PH

Pre- and post-filtration recommended

 $\begin{array}{ll} \textbf{Pre-filtration grade} \ \mu m & .01 \\ \textbf{Post-filtration grade} \ \mu m & 1 \\ \end{array}$

NEMA 12

ASME certified vessels

CRN approved vessels in select provinces

cULus control panel

Max inlet air temperature $^{\circ}F$ 120Min/max ambient air temperature $^{\circ}F$ 40/105Min/max operating pressure psig100/125Average purge air*7%

^{**} Desiccant ships separate for dryers rated 2000 scfm and above

^{*} Purge air percentage is the amount of dried compressed air diverted from the active drying vessel to the other vessel during the regeneration process. The diverted air does not return to the system. Meaning the lower the average purge percentage, the higher system efficiency is.

DMD SERIES DESICCANT MODULAR REGENERATIVE DRYERS

FREQUENCY: 60 Hz & 50 Hz

Model #	Flow Rate (scfm)	Connection Size (in) NPT	Height (in)	Width (in)	Depth (in)	Weight (lbs)
DMD-3	3	1/2″	22	13	10	32
DMD-5	5	1/2"	25	13	10	36
DMD-10	10	1/2"	36	13	10	52
DMD-15	15	1/2"	32	15	10	57
DMD-20	20	1/2"	44	15	10	79
DMD-25	25	1/2"	50	15	10	90
DMD-30	30	1/2″	59	15	10	107
DMD-40	40	1½″	49	16	17	156
DMD-50	50	1½″	55	16	17	172
DMD-60	60	1½″	69	16	17	202
DMD-75	75	1½″	51	16	23	257
DMD-100	100	1½″	57	16	23	286
DMD-120	120	1½″	69	16	23	334
DMD-180	180	1½″	59	16	28	407
DMD-240	240	1½″	59	16	33	519

CAPACITY CORRECTION FACTORS FOR DIFFERING OPERATING PRESSURE															
Operating Pressure psig	50	60	70	80	90	100	110	120	130	140	150	175	200	225	250
Correction Factor	0.56	0.65	0.74	0.83	0.91	1.00	1.04	1.08	1.12	1.16	1.2	1.29	1.37	1.45	1.52

CAPACITY CORRECTION FACTORS FOR DIFFERING INLET AIR TEMPERATURES											
Inlet Air Temperature ${}^{\circ}\!\mathit{F}$	70	80	90	100	105	110	115	120			
Correction Factor	1.12	1.1	1.06	1	0.93	0.86	0.8	0.75			

Air flow capacity = Operating pressure x Inlet air temperature

Standard outlet pressure dew point $^{\circ}$ -40

Standard operating voltage 115–230V/1PH

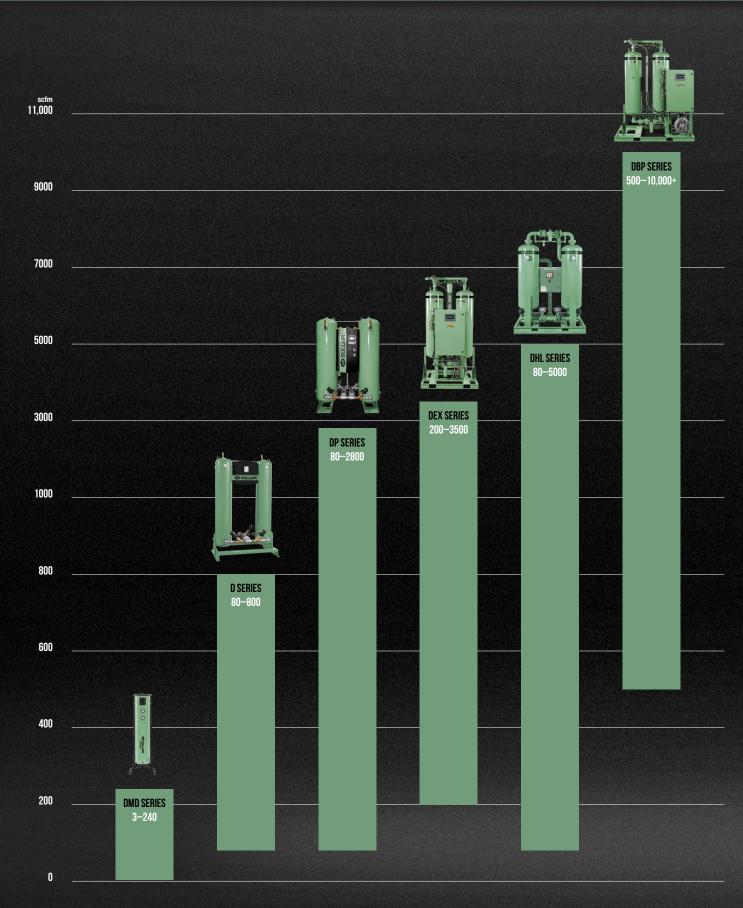
Pre- and post-filtration recommended

Pre-filtration grade μm .01 Post-filtration grade μm 1

ASME compliant

CRN approved

cULus control panel


Max inlet air temperature $^{\circ}F$ 122Min/max ambient air temperature $^{\circ}F$ 34/122Min/max operating pressure psig58/232Average purge air*15%

^{*} Purge air percentage is the amount of dried compressed air diverted from the active drying vessel to the other vessel during the regeneration process. The diverted air does not return to the system. Meaning the lower the average purge percentage, the higher system efficiency is.

